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Abstract
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1 WHY SYMMETRIES

How do people make predictions?
How do people make predictions? How
did people know that the Sun will rise
in the morning? that a poisonous snake
can bite, and its bite can be deadly? Be-
cause in the past, the sun was always
rising; because in the past, snakes would
sometimes bite, and the bitten person
would sometimes die.

In all these cases, to make a predic-
tion, we look at similar situations in the
past – and make predictions based on
what happened in such situations.

Some predictions are more compli-
cated than that – they are based on
using formulas, equations, and physical
laws. But how do we know that a for-
mula – e.g., Ohm’s law – is valid? Be-
cause in several previous similar situa-
tions, this formula was true, so we con-
clude that this formula should be true
now as well.

How to describe this idea in pre-
cise terms? The fact that the same
phenomenon is observed in several sim-
ilar situations means, in effect, that
we can make some changes in a situa-
tion, and the conclusion will remain the
same.

For example, when we check Ohm’s
law, we can move the laboratory – in
which we perform the measurements –
to a different location, we can rotate it,
we can increase it in size, we can change
the value of the current, and after all
these changes, the formula remains the
same – in other words, remains invari-
ant.

Let us describe this invariance in
precise terms. We have some phe-

nomenon p depending on the situation
s. A generic change – such as shift or ro-
tations – means that we replace the orig-
inal situation s by the changed situation
T (s). In these terms, invariance means
that the phenomenon remains the same
after the change, i.e., that

p(T (s)) = p(s). (1)

In physics, such invariance is called
a symmetry. A particular case of
an invariance is when we have, e.g., a
spherically symmetric object. If we ro-
tate this object, it will remain the same
– this is exactly what symmetry means
in geometry.

Because of this example, physicists
call each invariance symmetry.

Symmetries play a fundamental
role in physics. Our above argument
seems to indicate that symmetries play
a fundamental role in physics – and in-
deed they do; see, e.g., [10, 42].

While in the past, new physical the-
ories – such as Newton’s mechanics or
Maxwell’s electromagnetism – were for-
mulated in terms of differential equa-
tions, nowadays theories are usually
formulated in terms of their symme-
tries, and equations can be derived from
the requirement of invariance with re-
spect to these symmetries. Moreover,
it turned out that even more tradi-
tional physical equations, such as New-
ton’s or Maxwell’s, equations that were
not originally derived from symmetries,
can actually be uniquely determined by
the corresponding symmetries; see, e.g.,
[11, 12, 22, 25].

Comment. Similar symmetries can be
used to explain many algorithms and
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heuristics in computer science [35], in-
cluding several heuristic formulas from
fuzzy logic, the empirical efficiency of
different activation functions in neural
networks, etc.
What about economics? The above
arguments about predictions are not
limited to physical world: we make pre-
dictions about social events – e.g., eco-
nomic predictions – the same way we
make predictions in physics: we recall
similar situations in the past, and we
predict that the same phenomenon will
occur now. In other words, predictions
in economics are also, in essence, based
on invariance and symmetries.

So, the following natural question
appears. As we have mentioned, in
physics, many empirical formulas, for-
mulas that were originally derived based
on the observations, can often be de-
rived from the basic symmetries. Can
we do the same with empirical-based
econometric formulas? Can we derive
them from some basic symmetries?

Our answer to this question. Our
answer to the above questions is “Yes,
we can!”. In this paper, we will show
that many basic semi-heuristic eco-
nomic laws can actually be derived from
the corresponding natural symmetries.

To explain how the economics laws
can be thus derived, we first need to an-
alyze which symmetries are natural in
the economic context. In this analysis,
we will follow an analogy with physics.

2 WHICH SYMMETRIES ARE
NATURAL

Scaling: case of physics. Equations
– like Ohm’s law stating that the volt-

age V is equal to the product of the
current I and the resistance R – deal
with numerical values of different phys-
ical quantities. But these numerical val-
ues are not absolute, they depend on the
choice of the measuring unit.

For example, if instead of using
Ampere (A) as a unit of current we
use a 1000 times smaller unit milli-
Ampere (mA), the actual current will
not change, but its numerical value will
multiply by 1000. For example, instead
of 2 A, we will now have 1000 ·2 = 2000
mA.

In general, if we replace the origi-
nal measuring unit with a unit which is
λ times smaller, then all the numerical
values get multiplied by λ: instead of
the original value x, we now have a new
value x′ = λ · x. Such a transformation
x→ λ·x that multiplies each value x by
the same constant λ is known as scaling,
and invariance with respect to scaling is
known as scale-invariance.

What can we deduce from scale-
invariance. Let us first consider the
simplest case when we have a depen-
dence of one quantity on the other y =
f(x). This is the case, e.g., if we fix a
conductor (and thus, fix its resistance),
and we analyze how the voltage y mea-
sured between the two ends of this con-
ductor depends on the current x.

At first glance, it may seem that in-
variance simply means that when we re-
place x and λ · x, the value of y should
not change:

f(λ · x) = f(x). (2)

However, such a definition would lead
to a constant function f(x) (at least a
function which is constant for x > 0):
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indeed, for every q > 0, by taking x = 1
and λ = q, we conclude, from the for-
mula (2), that f(q) = f(1), i.e., that the
function f(x) is indeed a constant.

From the physical viewpoint, the
reason for this strange result is clear:
different measuring units are related.
For example, if we change a unit of dis-
tance from meters to feet, then, to pre-
serve physical formulas, we also need to
change the unit of speed from m/sec to
ft/sec. Similarly, if we change the unit
of current, then, to preserve the formu-
las, we need to appropriately change the
unit for voltage. In general:

� if we change the unit of x to a λ
times smaller one and thus change
x to x′ = λ · x,

� then we should according change
the unit of y to a one which is C
times different: y′ = C · y, where
this C depends on λ: C = C(λ),

� so that when y = f(x), then in
the new units x′ and y′, we have
the exact same dependence y′ =
f(x′).

Substituting the above expressions for
x′ and y′ into the formula y′ = f(x′),
we conclude that

f(λ · x) = C(λ) · f(x). (3)

What can we deduce from this scale-
invariance? For simplicity, let us as-
sume that the function f(x) is differ-
entiable – this is a usual assumption
in physics. In this case, the function

C(λ) =
f(λ · x)

f(x)
is also differentiable –

as a ratio of two differentiable functions.
Thus, we can differentiate both side of

equation (3) with respect to λ and sub-
stitute λ = 1. As a result, we first get

x · df
dx

(λ · x) =
dC

dλ
(λ) · f(x), and then

x · df
dx

(x) = c · f(x),

where we denoted c
def
= C ′(1). We can

now separate the variables, i.e., move
all the terms containing x and dx to
one side, and all the terms containing
f and df to another side. For that,
we multiply both sides by dx and di-
vide both sides by x and f , getting
df

f
= c · dx

x
. Integrating both sides, we

get ln(f) = c · ln(x) + c0, where c0 is an
integration constant. Thus,

f = exp(ln(f)) = exp(c · ln(x) + c0)

= exp(c · ln(x)) · exp(c0)

= A · (exp(ln(x))c = A · xc,

where we denoted A
def
= exp(c0).

So, scale-invariance implies the
power law y = A · xc.
Comments.

� This result holds without assum-
ing that the function f(x) is differ-
entiable: it is sufficient to assume
that it is continuous (or even mea-
surable); see, e.g., [1].

� A similar result holds if we have
a dependence on several variables,
i.e., if we have a dependence
y = f(x1, . . . , xn) which is scale-
invariant in the sense that for each
values λ1, . . . , λn, there exists a C
such that if y = f(x1, . . . , xn) then
y′ = f(x′1, . . . , x

′
n), where x′i = λi ·

xi and y′ = C · y. Such functions
have the form y = A ·xc11 · . . . ·xcnn .



24 Asian Journal of Economics and Banking (2019), 3(1), 20-39

Scale-invariance is important in
economics as well. Many quanti-
ties in economics are scale-invariant: for
example, the numerical values of in-
come or of the country’s Gross Domestic
Product (GDP) depend on what mon-
etary units we use. We can use the
units of the corresponding country –
e.g., Dong in the case of Vietnam – or,
if we want to compare salaries in dif-
ferent countries, we can use one of the
universal currencies, e.g., US dollars.

The actual income is the same no
matter what units we use, but numeri-
cal values are, of course, different. Sim-
ilar to physics, in such cases, it makes
sense to require that the resulting for-
mulas remain valid if we simply change
a monetary unit; of course, we may need
to appropriately change related units as
well.

Shift: case of physics. For some
physical quantities, the numerical value
also depends on the starting point. For
example, while we usually measure time
by using Year 0 as the starting point,
many religious calendars – correspond-
ing to Buddhism, Islam, Judaism, etc.
– use different starting times.

Similarly, while the usual Celsius
scale for temperature starts with the
water freezing point as 0, we can alter-
natively use the Kelvin scale, in which
0 is the smallest possible temperature
≈ −273 C, or the Fahrenheit scale com-
monly used in the US, in which 0 C cor-
responds to 32 F.

In general, if we replace the origi-
nal starting point with a starting point
which is x0 times smaller or earlier, then
all the numerical values are increased
by x0: instead of the original value x,

we now have a new value x′ = x + x0.
Such a transformation x → x + x0,
that adds the same constant x0 to each
value x, is known as shift, and invari-
ance with respect to shift is known as
shift-invariance.

What can we deduce from shift-
invariance. Let us first consider the
case when we have a dependence of one
quantity on the other y = f(x). In this
case, if we change the starting point for
x, then, to preserve the formulas, we
need to appropriately change the unit
for y:

� if we change x to x′ = x+ x0,

� then we should according change
the unit of y to a one which is C
times different y′ = C · y, where
this C depends on x0: C = C(x0),

� so that when y = f(x), then in
the new units x′ and y′, we have
the exact same dependence y′ =
f(x′).

Substituting the above expressions for
x′ and y′ into the formula y′ = f(x′),
we conclude that

f(x+ x0) = C(x0) · f(x). (4)

What can we deduce from this shift-
invariance? Let us assume that the
function f(x) is differentiable. In this

case, the function C(x0) =
f(x+ x0)

f(x)
is

also differentiable – as a ratio of two dif-
ferentiable functions. Thus, we can dif-
ferentiate both side of equation (4) with
respect to x0 and substitute x0 = 0.

As a result, we first get
df

dx
(x + x0) =
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dC

dx0
(x0) · f(x), and then

df

dx
= c · f,

where we denoted c
def
= C ′(0).

We can now separate the variables,
i.e., move all the terms containing x and
dx to one side, and all the terms con-
taining f and df to another side. For
that, we multiply both sides by dx and

divide both sides by f , getting
df

f
=

c · dx. Integrating both sides, we get
ln(f) = c · x + c0, where c0 is an in-
tegration constant. Thus,

f = exp(ln(f)) = exp(c · x+ c0)

= A · exp(c · x),

where we denoted A
def
= exp(c0).

So, shift-invariance implies the ex-
ponential dependence y = A · exp(c · x).

Comments.

� This result holds without assum-
ing that the function f(x) is differ-
entiable: it is sufficient to assume
that it is continuous (or measur-
able); see, e.g., [1].

� A similar result holds if we have
a dependence on several variables,
i.e., if we have a dependence
y = f(x1, . . . , xn) which is shift-
invariant in the sense that for each
values x01, . . . , x0n, there exists a
C such that if y = f(x1, . . . , xn)
then y′ = f(x′1, . . . , x

′
n), where

x′i = xi + x0i and y′ = C · y.
Such functions have the form y =
A · exp(c1 · x1 + . . .+ cn · xn).

Shift-invariance is important in
economics as well. Many quantities
in economics are shift-invariant. For ex-
ample, when we compute the income of
people living in countries with socialized
medicine, we can compute this income
in two ways:

� we can simply take the income as
is,

� or, if want a fair comparison with
income in countries like US, where
there is no socialized medicine, we
add the average cost of medical
expenses to the income.

Additivity. How can we estimate the
force f(q) with which an electric field
acts on a body of a known electric
charge q? If this body consists of two
components, then there are two ways to
do it:

� we can apply the formula f(q) to
the body as a whole,

� or we can apply this formula to
both components, with charges q′

and q′′, find the forces f ′ = f(q′)
and f ′′ = f(q′′) acting on each
of the components, and then add
these forces into a single value
f(q′) + f(q′′).

The second possibility come from the
fact that both charges and forces are ad-
ditive in the sense that:

� the overall electric charge q of a
two-component body in which two
components have electric charges
q′ and q′′ is equal to the sum of
these two charges, and
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� the overall force acting on a two-
component body is equal to the
sum of the forces acting on each
of the components.

It is reasonable to require that the
two estimates lead to the same number,
i.e., that

f(q′ + q′′) = f(q′) + f(q′′).

In general, we have functions that sat-
isfy the following property for all x and
y:

f(x+ y) = f(x) + f(y). (5)

Such functions are known as additive.

What can we deduce from additiv-
ity. Let us consider the case when we
have a dependence of one quantity on
the other y = f(x). Let us assume that
the function f(x) is differentiable. In
this case, we can differentiate both side
of equation (5) with respect to y and
then substitute y = 0. As a result, we

first get
df

dx
(x + y) =

df

dy
(y), and then

df

dx
(x) = c, where we denoted c

def
= f ′(0).

Integrating both sides of the formula
df

dx
(x) = c, we get f(x) = c · x + c0,

where c0 is an integration constant.
For x = 0, the formula (5) takes the

form f(0) = 2f(0), hence f(0) = 0.
Thus, c0 = 0, and f(x) = c · x.

So, additivity implies the linear de-
pendence y = c · x.

Comments.

� This result holds without assum-
ing that the function f(x) is differ-
entiable: it is sufficient to assume
that it is continuous (or measur-
able); see, e.g., [1, 23].

� A similar result holds if we have
a dependence on several vari-
ables, i.e., if we have a depen-
dence y = f(x1, . . . , xn) which
is additive in the sense that
for each values x′1, x

′′
1, . . . , x

′
n, x

′
n,

if y′ = f(x′1, . . . , x
′
n) and

y′′ = f(x′′1, . . . , x
′′
n), then y =

f(x1, . . . , xn), where xi = x′i + x′′i
and y = y′ + y′′.

Additivity is important in eco-
nomics as well. Many quantities in
economics are additive:

� the overall population of a country
is equal to the sum of populations
in different provinces,

� the overall GDP of a country is
equal to the sum of GDPs of dif-
ferent provinces,

� the overall trade volume of a coun-
try is equal to the sum of the trade
volume of different provinces, etc.

Thus, if we are interested in estimating
the trade volume based on the GDP, we
can estimate this trade volume in two
ways:

� we can plug in the overall GDP
into the corresponding formula,

� or we can use this formula to es-
timate the trade volume of each
province, and then add up the re-
sulting estimates.

It is reasonable to require that these two
estimates lead to the same result.

Summary. In this paper, we consider
three types of natural symmetries:
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� scale-invariance
f(λ · x) = C(λ) · f(x) that leads
to the power law:

f(x) = A · xc;

� shift-invariance
f(x+x0) = C(x0) ·f(x) that leads
to the exponential dependence:

f(x) = A · exp(c · x);

� additivity f(x+ y) = f(x) + f(y)
that leads to the linear depen-
dence:

f(x) = c · x.

3 HOW WE (SHOULD) MAKE
DECISIONS: THE NOTION
OF UTILITY

Need to describe human prefer-
ences. In the previous section, we
talked about numerical economic quan-
tities like population, GDP, income, etc.
However, economy is driven by human
preferences. So, to adequately describe
economic processes, in addition to the
above-mentioned numerical characteris-
tics, we must also describe human pref-
erences. How can we do it?

How can we describe human pref-
erences? A natural way to describe hu-
man preferences is as follows; see, e.g.,
[13, 24, 29, 36, 40]. We select two ex-
treme alternatives:

� a very bad alternative A− which is
worse than any of the actual op-
tions, and

� a very good alternative A+ which
is better than any of the actual
options.

Then, for each value p from the inter-
val [0, 1], we can form a lottery L(p) in
which we get A+ with probability p and
A− with the remaining probability 1−p.
When p = 0, the lottery L(0) is simply
equivalent to A−. The larger p, the bet-
ter the alternative. Finally, when p = 1,
we get A(1) = L+.

Thus, we get a continuous scale for
describing preferences. For each real-
istic alternative A, it is better than
L(0) = A− and worse than L(1) = A+:
L(0) < A < L(1). Of course, if L(p) <
A and p′ < p, then L(p′) < A. Similarly,
if A < L(p) and p < p′, then A < L(p′).
Thus, one can show that there exists a
threshold value u such that:

� for p < u, we have L(p) < A, and

� for p > u, we have A < L(p).

For example, we can take u = sup{p :
L(p) < A}. This value u is called the
utility of the given alternative A and is
denoted by u(A).

We can reformulate the threshold
statement by saying that the alterna-
tive A is equivalent to the lottery L(u),
where the equivalent has to be under-
stood in the above threshold sense, i.e.,
equivalently, that L(u − ε) < A <
L(u+ ε) for all ε > 0. In this sense, the
utility u(A) can be defined as a prob-
ability u for which the alternative A is
equivalent to the lottery L(u).

What if we select a different pair
A− and A+? The numerical value u(A)
of utility obtained by the above con-
struction depends on the choice of A−
and A+. If we select another pair A′−
and A′+, then, for the same alterna-
tive, we will get a different utility value
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u′(A). What is the relation between
u(A) and u′(A)?

To answer this question, let us con-
sider the case when A′− < A− < A+ <
A′+ – other cases can be treated sim-
ilarly. In this case, since A− and A+

are between A′− and A′+, we can find
a utility u′(A−) and u′(A+) of each of
them with respect to the pair (A′−, A

′
+).

Then:

� A− is equivalent to a (A′−, A
′
+)-

lottery L′(u′(A−)), in which we
get A′+ with probability u′(A−)
and A′− with the remaining prob-
ability 1− u′(A−), and

� A+ is equivalent to a (A′−, A
′
+)-

lottery L′(u′(A+)), in which we
get A′+ with probability u′(A+)
and A′− with the remaining prob-
ability 1− u′(A+).

Each alternative A with utility u(A) is,
by definition of utility, equivalent to a
lottery L(u(A)) in which we get A+ with
probability u(A) and A− with probabil-
ity 1−u(A). Each of the alternatives A−
and A+ is, as we have just mentioned,
itself equivalent to a lottery. Thus, the
original alternative A is equivalent to a
complex lottery, in which:

� first, we select A+ with probabil-
ity u(A) and A− with the proba-
bility 1− u(A), and then,

� depending on what we selected on
the first step, we select A′+ with
probability u′(A+) or u′(A−) and
we select A′− with the remaining
probability.

As a result of this complex lottery, we
always get either A′− or A′+. The prob-
ability to get A′+ can be computed by

adding probabilities corresponding to
two different ways of getting A′+: it is
u(A) ·u′(A+) + (1−u(A)) ·u′(A−). But
by definition of a (A′−, A

′
+)-based util-

ity, this probability is exactly the utility
u′(A). Thus,

u′(A) = u(A)·u′(A+)+(1−u(A))·u′(A−)

= u′(A−) + u(A) · (u′(A+)− u′(Ai)).
Thus, the transformation from the old
utility u(A) to the new utility u′(A)
follows the same formulas as when we
change the starting point and the mea-
suring unit:

� u′(A−) plays the role of shift x0,
and

� the difference u′(A+) − u′(A−)
plays the role of the scaling λ.

So, to analyze the formulas involving
utility, we can also use concepts of scale-
and shift-invariance.

4 HOW UTILITY DEPENDS ON
MONEY

Utility u is not proportional to
money m. It is an empirical fact that
utility is not proportional to money.
Intuitively, this is easy to understand:
when a person has nothing, adding $10
feels great, but when this person already
has $1000, adding $10 does not change
much.

So, how is utility depending on
money?

Natural starting point. In general,
as have mentioned, utilities are defined
modulo an arbitrary linear transforma-
tion, so we can shift them and/or scale
them.
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For money, there is a natural start-
ing point corresponding to 0 amount,
i.e., corresponding to the case when we
have no savings and no debts. Without
losing generality, let us select a utility
function for which this 0-money situa-
tion corresponds to 0 utility. Once the
starting point is thus fixed, the only re-
maining utility transformation is scaling
u→ k · u.

So what is the dependence of u(m)?
As we have mentioned earlier, the nu-
merical value describing the amount of
money depends on the choice of the
monetary unit. It is therefore reason-
able to require that the formula u(m)
describing the dependence of utility u
on money m does not change if we sim-
ply change the monetary unit.

In precise terms, this means that
if we select a different monetary unit,
i.e., if we consider new numerical val-
ues m′ = λ · m, then we will get the
exact same dependence u′(m′) of utility
of money, probably after appropriately
re-scaling the utility into u′ = C ·u. We
already know that this scale-invariance
leads to the power law u = A · mc –
and this is exactly what was experimen-
tally observed, with c ≈ 0.5 – see, e.g.
[17, 28].

5 PROBABILISTIC CHOICE

Formulation of the problem. The
traditional utility-based decision theory
assumes that, when faced several times
with the same several alternatives, the
person would make the same selection.
In reality, if we repeatedly offer the
same choice to a person, this person
will, in general, select different alterna-

tives in different iterations. Specifically,
alternatives with low utility will practi-
cally never be selected, the alternative
with the largest utility value will be se-
lected most frequently, but alternatives
whose utility is close to the largest will
also be selected sometimes.

In such situations, all we can try
to predict is the frequency (probability)
with which each alternative is selected.

Analysis of the problem. As we have
mentioned, the larger the utility of an
alternative a, the higher the probabil-
ity that this alternative will be selected.
Thus, we can say that the probability
p(a) of selecting the alternative a is pro-
portional to some monotonic function
f(u) of its utility: p(a) = C · f(u(a)).
The coefficient of proportionality C can
be determined from the condition that
one of the alternatives is always se-
lected, and thus, the sum of the selec-
tions probabilities should be equal to
1:

∑
b

p(b) = C ·
∑
b

f(u(b)) = 1, hence

C =
1∑

b

f(u(b))
and p(a) =

f(u(a))∑
b

f(u(b))
.

In these terms, the question is:
which monotonic function f(u) should
we choose?
Let us apply natural symmetries.
As we have mentioned, utility is defined
modulo an arbitrary shift u → u′ =
u + u0. It is reasonable to select the
monotonic function f(u) in such a way
that the resulting probabilities do not
change if we apply such a shift, i.e., if
we replace each value u(a) by a shifted
value u′(a) = u(a) + u0.

The original probability is propor-
tional to f(u), the shifted one is pro-
portional to f(u+ u0). So, we conclude
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that the shifted function f(u+u0) must
be proportional to the original one f(u),
i.e., that we should have f(u + u0) =
C(u0)·f(u) for some proportionality co-
efficient C(u0).

We already know that this func-
tional equation leads to f(u) = A ·
exp(c0 · u) for some c0, and thus, to

p(a) =
exp(c0 · u(a))∑
b

exp(c0 · u(b))
[21]. This is

exactly the formula for which D. Mc-
Fadden received his Nobel Prize in 2011;
see, e.g., [32, 33, 44].

Comment. As we have mentioned ear-
lier, utility is determined not only mod-
ulo shift, it is also determined modulo
an arbitrary scaling u → u′ = k · u.
Clearly, McFadden’s formula is not in-
variant with respect to scalings. What
if instead of shift-invariance we require
scale-invariance?

In other words, what if we re-
quire that the probabilities p(a) do not
change if we replace each utility u(a)
with a re-scaled one u′(a) = k · u(a)?
Similarly to the shift-invariance case,
this requirement implies that f(k · u) =
C(k) ·f(u) for some C(k), and we know
that this leads to f(u) = A ·uc for some

c and thus, to p(a) =
(u(a))c∑
b

(u(b))c
[21].

This explains the empirical formula de-
scribed in [16].

6 DECISION MAKING UNDER
INTERVAL UNCERTAINTY

Formulation of the problem. If we
know the exact utility value u(a) cor-
responding to each possible action a,
then it is reasonable to select the action

that leads to the largest possible value
of utility.

However, in many practical situa-
tions, we do not know the exact con-
sequences of each possible action and
therefore, we cannot determine the ex-
act utility value of each action. At best,
for each possible action a, we know the
bounds on the utility, i.e., we know the
interval [u(a), u(a)] that contains the
actual (unknown) utility value. In such
situations of interval uncertainty, how
should we make a decision?

Analysis of the problem. The sim-
plest case of the above problem is when:

� we have two alternatives;

� for the first alternative, we know
the interval [u, u]; and

� for the second alternative, we
know the exact utility value u.

Let is fix u and u and consider different
possible values u.

When the value u is small (e.g.,
when u < u), the first alternative is
clearly better. When the value u is large
(e.g., when u < u), the second alterna-
tive is clearly better. Thus, similarly to
the definition of utility, there exists a
threshold value u0(u, u) such that:

� when u < u0, the first alternative
is better, and

� when u0 < u, the second alterna-
tive is better.

In this sense, the interval [u, u] is equiv-
alent to the threshold value u0.

Thus, in general, to compare two or
more intervals:
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� we compute, for each of these
intervals [u(a), u(a)], the cor-
responding equivalent value
u0(u(a), u(a)), and then

� we select the action a for which
this equivalent value is the largest.

So, the remaining problem is how to
find the equivalent value u0(u, u).

Let us use symmetries. As we
have mentioned, utility is defined mod-
ulo shifts and scalings. It is therefore
reasonable to require that the relation
u = u0(u, u) does not change under such
transformations, i.e., that:

� this relation be shift-invariant: if
u0(u, u) = u, then for each pos-
sible shift ∆u, we have u0(u +
∆u, u+ ∆u) = u+ ∆u; and

� this relation be scale-invariant: if
u0(u, u) = u, then for each possi-
ble scaling k > 0, we have u0(k ·
u, k · u) = k · u.

Let us denote, by αH , a utility value
u0(0, 1) which is equivalent to the sim-
plest possible interval [0, 1]. Clearly,
since all the possible values from this in-
terval are greater than or equal to 0, the
equivalent value should also be better
than or equivalent to 0, i.e., we should
have αH ≥ 0. Similarly, we should have
αH ≤ 1.

For each pair of values u < u, due
to scale-invariance with k = u − u,
the equation u0(0, 1) = αH implies that
u0(0, u− u) = (u− u) ·αH . Then, shift-
invariance with ∆u = u implies that
u0(u, u) = u + (u − u) · αH . The right-
hand side of this formula can be rewrit-
ten as

u0(u, u) = αH · u+ (1− αH) · u;

see, e.g., [24]. This is exactly the for-
mula for decision making under interval
uncertainty for which Leo Hurwicz re-
ceived his Nobel prize [15, 29]. Thus,
Hurwicz’s formula can be derived from
natural symmetries.

Comment. Hurwicz’s formula is known
as the optimism-pessimism criterion,
for the following reason:

� if αH = 1, this means that the
person only takes into account the
best possible scenario when mak-
ing a decision; in other words, this
person is a complete optimist;

� if αH = 0, this means that the
person only takes into account the
worst possible scenario when mak-
ing a decision; in other words, this
person is a complete pessimist;

� intermediate values αH between 0
and 1 mean that the person take
into account both best-case and
worst-case scenarios.

7 TAKING FUTURE EFFECTS
INTO ACCOUNT WHEN
MAKING A DECISION

Formulation of the problem. When
making economic decisions, people nat-
urally value future gains as less bene-
ficial that current ones. An option is
which a person gets $1 at time t is
clearly worth less that a dollar now.
This makes sense, since if we get a dol-
lar now, we can invest it – e.g., deposit
it in a savings account – and thus, get
a larger amount by time t. This phe-
nomenon is known as discounting.
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How to take this phenomenon into
account? In other words, what is the
price D(t) that a person should be will-
ing to pay for the option of getting $1
at moment t?

Analysis of the problem. To esti-
mate D(t), let us use shift-invariance.
Specifically, for any pair of values t and
t0, the qualityD(t+t0) can be estimated
in two different ways:

� we can directly estimate the de-
sired quantity as D(t+ t0);

� alternatively, we can take into ac-
count that $1 at moment t + t0
(which is t periods after the mo-
ment t0) is equivalent to D(t) dol-
lars at moment t0; each dollar at
moment t0 is equivalent to D(t0)
dollars now; thus, D(t) dollars
at moment t0 are equivalent to
D(t0) ·D(t) dollars now.

It is reasonable to require that these two
estimates coincide, i.e., that

D(t+ t0) = D(t0) ·D(t).

This formula is a particular case of
the general shift-invariance, so we con-
clude that D(t) = A · exp(c · t) for
some A and c. Substituting this expres-
sion into the above formula, we conclude
that A = 1 and thus, D(t) = exp(c · t).
This is exactly the usual formula for dis-
counting; see, e.g., [8, 14, 18, 19, 20, 30,
31, 39, 46]. Thus, the usual formula for
discounting can be derived from natural
symmetries.

Comment. In [46], we showed that
symmetries can also be used to ex-
plain the empirically observed devia-

tions from the usual discounting for-
mula; see [8, 14, 18, 19, 20, 30, 31, 39]
for details on these deviations.

8 GROUP DECISION MAKING

Formulation of the problem. What
if a group of people needs to make a
joint decision?

To properly answer this question, we
also need to take into account that the
group may be unable to come to an
agreement. The resulting situation is
known as the status quo situation.

Analysis of the problem. We can al-
ways shift each individual utility so that
for the status quo solution, the utility of
each participant is 0.

Once this status quo point is fixed,
the only possible symmetries are scal-
ings ui → u′i = ki ·ui. It is reasonable to
require that the decision criterion does
not change under this scaling.

A reasonable idea is to have an ob-
jective function that combines n utili-
ties u1, . . . , un into a single utility value
u = f(u1, . . . , un). As we have analyzed
earlier, in this case, scale-invariance im-
plies that f(u1, . . . , xn) = A·uc11 ·. . .·ucnn .

It is also reasonable to require that
there is no prior preference to any of
the participants. In precise terms, this
means that the decision should not
change if we simply rename the par-
ticipants. With respect to the above
objective function, this means that all
the coefficients ci must coincide, so that
f(u1, . . . , un) = A · (u1 · . . . · un)c.

Maximizing this function is equiva-
lent to maximizing the product u1 · . . . ·
un; [27]. This is exactly the bargain-
ing solution proposed by nobelist John
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Nash [34, 29]. Thus, Nash’s solution can
also be derived from symmetries.

9 COBB-DOUGLAS PRODUC-
TION FUNCTION

Formulation of the problem. If we
know the country’s overall capital K
and overall labor input L, how can we
estimate the country’s production Y ?
In other words, what function f(K,L)
should we use to estimate Y ?

Analysis of the problem. The nu-
merical values of all these quantities –
capital, labor, and production – depend
on what units we use to measure them.
It is therefore reasonable to require that
the corresponding model Y ≈ f(K,L)
does not change if we simply change the
corresponding units. In other words, it
is reasonable to require that the depen-
dence f(K,L) be scale-invariant.

We already know that scale-
invariance implies that Y = A ·Kα ·Lβ,
for some α and β. This is exactly the
well-known Cobb-Douglas production
function; see, e.g., [7, 45, 23]. Thus,
the Cobb-Douglas formula can also be
derived from natural symmetries.

10 GRAVITY MODEL FOR
TRADE

Formulation of the problem. How
can we estimate the volume of trade
tij between the two countries i and j?
Clearly, the larger each country’s GDPs
gi and gj, the more trade we can ex-
pect. Similarly, the smaller the distance
rij between the two countries, the more
trade we expect. What will be a good

estimate for tij as a function of gi, gj,
and rij: tij = f(gi, gj, rij)?

Analysis of the problem. As we have
mentioned earlier, we can apply this for-
mula to countries as a whole or to dif-
ferent regions of these countries – and
then add up the resulting trade vol-
umes. It is reasonable to require that
the resulting estimate for the trade vol-
ume should not depend on whether we
consider the country as a whole or its
regions. This means that the depen-
dence on gi should be additive: f(g′i +
g′′i , gj, rij) = f(g′i, gj, rij) + f(g′′i , gj, rij).
As we have shown, this requirement im-
plies that the function f should be lin-
ear in gi: f(gi, gj, rij) = gi·F (gj, rij), for
some coefficient F (gj, rij) depending on
gj and rij.

Similarly, we can consider the coun-
try j as a whole or as a combination
of its regions. A similar additivity re-
quirement enables us to conclude that
the trade volume should be linear in gj
as well, so f(gi, gj, rij) = gi · gj ·H(rij)
for some function H(r).

To find the function H(r), it is rea-
sonable to take into account that the
distance can be measured in different
units, and the formula for the trade
should not change whether we use kilo-
meters or miles. The resulting scale-
invariance implies that H(r) = A · rc
for some A and c. Thus, we arrive at
the following formula for the trade vol-
ume between the two countries: tij =
A · gi · gj · rcij [26].

This is exactly the well-known grav-
ity model; see, e.g., [2, 3, 4, 38, 43].
Thus, the gravity model can indeed be
derived from natural symmetries.
Comment. The usual gravity model



34 Asian Journal of Economics and Banking (2019), 3(1), 20-39

only takes into account the GDPs gi and
gj of the two countries. What if we also
take into account their populations pi
and pj? In this case, additivity implies
that tij is linear in gi and pi, and it is
also linear in gj and pj. Thus, the over-
all dependence is bilinear, i.e., we get
the following more complex (and hope-
fully, more accurate) estimate [26]:

tij = (Ggg · gi · gj +Ggp · gi · pj
+Gpg · pi · gj +Gpp · pi · pj)/rcij.

11 LINEAR ARMAX-GARCH
MODELS

Formulation of the problem. How
can we predict the future value Xt

of an economic quantity X based on
its previous values Xt−1, Xt−2, . . . ,
and on the values dt, dt−1, . . . , of
an external quantity d that affects
X? In other words, which function
f(Xt−1, Xt−2, . . . , dt, dt−1, . . .) provides
the best estimate for Xt?

Analysis of the problem. In many
cases, the quantities X in which we are
interested are additive – like GDP. Sim-
ilarly, the quantities d that affect X are
usually additive – e.g., the amount of
foreign direct investment. In such cases,
it is reasonable to require that the pre-
diction should not depend on whether
we consider the country as a whole or
as a combination of several inputs, i.e.,
to require that

f(X ′t−1 +X ′′t−1, X
′
t−2 +X ′′t−2, . . . , d

′
t + d′′t ,

d′t−1 + d′′t−1, . . .) = f(X ′t−1, X
′
t−2,

. . . , d′t, d
′
t−1, . . .)

+ f(X ′′t−1, X
′′
t−2, . . . , d

′′
t , d
′′
t−1, . . .).

We know that this additivity require-
ment implies that the function f is lin-

ear, i.e., that

Xt ≈
p∑
i=1

ϕi ·Xt−i +
b∑
i=1

ηi · dt−i,

for appropriate coefficients ϕi and ηi.
To get an even more accurate predic-

tion, it is desirable to take into account
how accurately this model predicted the
past values of Xt, i.e., what were the dif-
ferences εt−1, εt−2, . . . , between the ac-
tual values and the predictions. For ad-
ditive quantities and linear models, the
differences are also additive, so we get a
more accurate linear model

Xt ≈
p∑
i=1

ϕi ·Xt−i +
b∑
i=1

ηi · dt−i

+

q∑
i=1

θi · εt−i,

for some θi.
Taking into account that the inac-

curacy of this model is exactly what we
denoted by εt, we this conclude that

Xt =

p∑
i=1

ϕi ·Xt−i +
b∑
i=1

ηi · dt−i + εt

+

q∑
i=1

θi · εt−i

see, e.g., [37].
This is exactly the AutoRegressive-

Moving-Average model with eXogenous
inputs (ARMAX) [6, 9]. Thus, this
model can indeed be justified by the cor-
responding symmetries.
Comment. If we denote the standard
deviation of εt by σt, then similar argu-
ments – based on the fact that for inde-
pendent random variables, variance σ2

t

is additive – show that the dynamics of
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standard deviations σt is described by a
linear formula

σ2
t = α0 +

∑̀
i=1

βi · σ2
t−i +

k∑
i=1

αi · ε2t−i;

see, e.g., [37]. This is exactly the Gener-
alized AutoRegressive Conditional Het-
erosckedasticity (GARCH) model [5, 6,

9]. Thus, GARCH formulas also follow
from the natural symmetries.
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